working on hitable based implementation

1. Reversed order in which images are rendered
2. Removed unused imports.
3. Added Hitable based Surface Normal Sphere.
This commit is contained in:
Ishan Jain 2019-06-25 23:14:37 +05:30
parent c53beb8cc1
commit cce1977603
10 changed files with 206 additions and 27 deletions

View File

@ -0,0 +1,71 @@
use crate::{
hitable::{HitRecord, Hitable, HitableList},
ray::Ray,
shapes,
vec3::Vec3,
};
const RADIUS: f32 = 0.5;
pub struct HitableSurfaceNormalSphere;
impl crate::Demo for HitableSurfaceNormalSphere {
fn name(&self) -> String {
"hit-table_surface_normal_sphere".to_owned()
}
fn render(&self, buf: &mut Vec<u8>, w: usize, h: usize) {
// in my case, The resolution is 1200x800
// These numbers are calculated by first calculating the aspect ratio
// and then just figuring out lower left corner, Width(2 x aspect ratio width)
// Height(2 x aspect ratio height)
let lower_left_corner = Vec3::new(-2.0, -1.0, -1.0);
let horizontal = Vec3::new(4.0, 0.0, 0.0);
let vertical = Vec3::new(0.0, 2.0, 0.0);
let origin = Vec3::new(0.0, 0.0, 0.0);
let list: Vec<Box<dyn Hitable>> = vec![
Box::new(shapes::Sphere::new(Vec3::new(0.0, 0.0, -1.0), RADIUS)),
Box::new(shapes::Sphere::new(Vec3::new(0.0, -100.5, -1.0), 100.0)),
];
let world = HitableList::new(list);
let mut offset = 0;
for j in (0..h).rev() {
for i in 0..w {
let u = i as f32 / w as f32;
let v = j as f32 / h as f32;
let ray = Ray::new(origin, lower_left_corner + horizontal * u + vertical * v);
let color = calculate_color(ray, &world);
let ir = (255.99 * color.r()) as u8;
let ig = (255.99 * color.g()) as u8;
let ib = (255.99 * color.b()) as u8;
buf[offset] = ir;
buf[offset + 1] = ig;
buf[offset + 2] = ib;
offset += 4;
}
}
}
}
fn calculate_color(ray: Ray, world: &HitableList) -> Vec3 {
let mut hit_rec = HitRecord {
t: 0.0,
normal: Vec3::new(0.0, 0.0, 0.0),
point: Vec3::new(0.0, 0.0, 0.0),
};
if world.hit(&ray, 0.001, std::f32::MAX, &mut hit_rec) {
Vec3::new(
hit_rec.normal.x() + 1.0,
hit_rec.normal.y() + 1.0,
hit_rec.normal.z() + 1.0,
) * 0.5
} else {
let unit_direction = ray.direction().unit_vector();
let t = 0.5 * (unit_direction.y() + 1.0);
Vec3::new(1.0, 1.0, 1.0) * (1.0 - t) + Vec3::new(0.5, 0.7, 1.0) * t
}
}

View File

@ -13,14 +13,14 @@ impl crate::Demo for LinearInterpolationY {
// These numbers are calculated by first calculating the aspect ratio // These numbers are calculated by first calculating the aspect ratio
// and then just figuring out lower left corner, Width(2 x aspect ratio width) // and then just figuring out lower left corner, Width(2 x aspect ratio width)
// Height(2 x aspect ratio height) // Height(2 x aspect ratio height)
let lower_left_corner = Vec3::new(-3.0, -2.0, -1.0); let lower_left_corner = Vec3::new(-2.0, -1.0, -1.0);
let horizontal = Vec3::new(6.0, 0.0, 0.0); let horizontal = Vec3::new(4.0, 0.0, 0.0);
let vertical = Vec3::new(0.0, 4.0, 0.0); let vertical = Vec3::new(0.0, 2.0, 0.0);
// Observer position // Observer position
let origin = Vec3::new(0.0, 0.0, 0.0); let origin = Vec3::new(0.0, 0.0, 0.0);
let mut offset = 0; let mut offset = 0;
for j in 0..h { for j in (0..h).rev() {
for i in 0..w { for i in 0..w {
// relative offsets // relative offsets
// current position to total width/length // current position to total width/length

View File

@ -1,8 +1,10 @@
mod hitable_surface_normal_sphere;
mod linear_interpolation_y; mod linear_interpolation_y;
mod ppm_example; mod ppm_example;
mod simple_sphere; mod simple_sphere;
mod surface_normal_sphere; mod surface_normal_sphere;
pub use hitable_surface_normal_sphere::HitableSurfaceNormalSphere;
pub use linear_interpolation_y::LinearInterpolationY; pub use linear_interpolation_y::LinearInterpolationY;
pub use ppm_example::PpmExample; pub use ppm_example::PpmExample;
pub use simple_sphere::SimpleSphere; pub use simple_sphere::SimpleSphere;

View File

@ -8,7 +8,7 @@ impl crate::Demo for PpmExample {
fn render(&self, buf: &mut Vec<u8>, w: usize, h: usize) { fn render(&self, buf: &mut Vec<u8>, w: usize, h: usize) {
let mut offset = 0; let mut offset = 0;
for j in 0..h { for j in (0..h).rev() {
for i in 0..w { for i in 0..w {
let color = Vec3::new((i as f32) / (w as f32), (j as f32) / (h as f32), 0.2); let color = Vec3::new((i as f32) / (w as f32), (j as f32) / (h as f32), 0.2);

View File

@ -1,6 +1,6 @@
use crate::{ray::Ray, vec3::Vec3}; use crate::{ray::Ray, vec3::Vec3};
const RADIUS: f32 = 0.8; const RADIUS: f32 = 0.5;
pub struct SimpleSphere; pub struct SimpleSphere;
@ -14,14 +14,14 @@ impl crate::Demo for SimpleSphere {
// These numbers are calculated by first calculating the aspect ratio // These numbers are calculated by first calculating the aspect ratio
// and then just figuring out lower left corner, Width(2 x aspect ratio width) // and then just figuring out lower left corner, Width(2 x aspect ratio width)
// Height(2 x aspect ratio height) // Height(2 x aspect ratio height)
let lower_left_corner = Vec3::new(-3.0, -2.0, -1.0); let lower_left_corner = Vec3::new(-2.0, -1.0, -1.0);
let horizontal = Vec3::new(6.0, 0.0, 0.0); let horizontal = Vec3::new(4.0, 0.0, 0.0);
let vertical = Vec3::new(0.0, 4.0, 0.0); let vertical = Vec3::new(0.0, 2.0, 0.0);
// Observer position // Observer position
let origin = Vec3::new(0.0, 0.0, 0.0); let origin = Vec3::new(0.0, 0.0, 0.0);
let mut offset = 0; let mut offset = 0;
for j in 0..h { for j in (0..h).rev() {
for i in 0..w { for i in 0..w {
// relative offsets // relative offsets
// current position to total width/length // current position to total width/length

View File

@ -1,6 +1,6 @@
use crate::{demo::Demo, ray, ray::Ray, vec3::Vec3}; use crate::{ray::Ray, vec3::Vec3};
const RADIUS: f32 = 0.8; const RADIUS: f32 = 0.5;
pub struct SurfaceNormalSphere; pub struct SurfaceNormalSphere;
impl crate::Demo for SurfaceNormalSphere { impl crate::Demo for SurfaceNormalSphere {
@ -13,14 +13,14 @@ impl crate::Demo for SurfaceNormalSphere {
// These numbers are calculated by first calculating the aspect ratio // These numbers are calculated by first calculating the aspect ratio
// and then just figuring out lower left corner, Width(2 x aspect ratio width) // and then just figuring out lower left corner, Width(2 x aspect ratio width)
// Height(2 x aspect ratio height) // Height(2 x aspect ratio height)
let lower_left_corner = Vec3::new(-3.0, -2.0, -1.0); let lower_left_corner = Vec3::new(-2.0, -1.0, -1.0);
let horizontal = Vec3::new(6.0, 0.0, 0.0); let horizontal = Vec3::new(4.0, 0.0, 0.0);
let vertical = Vec3::new(0.0, 4.0, 0.0); let vertical = Vec3::new(0.0, 2.0, 0.0);
// Observer position // Observer position
let origin = Vec3::new(0.0, 0.0, 0.0); let origin = Vec3::new(0.0, 0.0, 0.0);
let mut offset = 0; let mut offset = 0;
for j in 0..h { for j in (0..h).rev() {
for i in 0..w { for i in 0..w {
let u = i as f32 / w as f32; let u = i as f32 / w as f32;
let v = j as f32 / h as f32; let v = j as f32 / h as f32;
@ -64,14 +64,13 @@ fn ray_hit_sphere(center: Vec3, radius: f32, ray: &Ray) -> f32 {
// when expanded we get // when expanded we get
// t * t * dot(B, B) + 2 * t * dot(B, A-C) + dot(A-C, A-C) - R*R = 0 // t * t * dot(B, B) + 2 * t * dot(B, A-C) + dot(A-C, A-C) - R*R = 0
let oc = ray.origin() - center; let pc = ray.origin() - center;
let a = ray.direction().dot(&ray.direction()); let a = ray.direction().dot(&ray.direction());
let b = 2.0 * oc.dot(&ray.direction()); let b = 2.0 * pc.dot(&ray.direction());
let c = oc.dot(&oc) - radius * radius; let c = pc.dot(&pc) - radius * radius;
let discriminant = b * b - 4.0 * a * c; let discriminant = b * b - 4.0 * a * c;
if discriminant >= 0.0 { if discriminant >= 0.0 {
// return quadratic root
(-b - discriminant.sqrt()) / (2.0 * a) (-b - discriminant.sqrt()) / (2.0 * a)
} else { } else {
-1.0 -1.0

View File

@ -0,0 +1,46 @@
use crate::ray::Ray;
use crate::vec3::Vec3;
#[derive(Debug, Copy, Clone)]
pub struct HitRecord {
pub t: f32,
pub point: Vec3,
pub normal: Vec3,
}
pub trait Hitable {
fn hit(&self, ray: &Ray, time_min: f32, time_max: f32, hit_rec: &mut HitRecord) -> bool;
}
pub struct HitableList {
inner: Vec<Box<dyn Hitable>>,
}
impl HitableList {
pub fn new(items: Vec<Box<dyn Hitable>>) -> HitableList {
HitableList { inner: items }
}
}
impl Hitable for HitableList {
fn hit(&self, ray: &Ray, t_min: f32, t_max: f32, hit_rec: &mut HitRecord) -> bool {
let mut temp_hit_rec: HitRecord = HitRecord {
t: 0.0,
point: Vec3::new(0.0, 0.0, 0.0),
normal: Vec3::new(0.0, 0.0, 0.0),
};
let mut hit_anything = false;
let mut closest_to_far = t_max;
for obj in &self.inner {
if obj.hit(&ray, t_min, closest_to_far, &mut temp_hit_rec) {
hit_anything = true;
closest_to_far = hit_rec.t;
hit_rec.point = temp_hit_rec.point;
hit_rec.t = temp_hit_rec.t;
hit_rec.normal = temp_hit_rec.normal;
}
}
hit_anything
}
}

View File

@ -1,27 +1,27 @@
mod demo; mod demo;
mod demos; mod demos;
mod hitable;
mod ray; mod ray;
mod shapes;
mod vec3; mod vec3;
use demo::Demo; use demo::Demo;
use demos::{LinearInterpolationY, PpmExample, SimpleSphere, SurfaceNormalSphere}; use demos::{
HitableSurfaceNormalSphere, LinearInterpolationY, PpmExample, SimpleSphere, SurfaceNormalSphere,
};
use sdl2::{ use sdl2::{
event::{Event, WindowEvent}, event::{Event, WindowEvent},
keyboard::Keycode, keyboard::Keycode,
pixels::PixelFormatEnum, pixels::PixelFormatEnum,
rect::Rect,
render::{Canvas, Texture, TextureValueError},
video::Window,
EventPump, Sdl,
}; };
fn main() -> Result<(), String> { fn main() -> Result<(), String> {
let sdl_ctx = sdl2::init()?; let sdl_ctx = sdl2::init()?;
let video_subsys = sdl_ctx.video()?; let video_subsys = sdl_ctx.video()?;
let (mut width, mut height): (usize, usize) = (1200, 800); let (mut width, mut height): (usize, usize) = (1200, 600);
let mut window = video_subsys let window = video_subsys
.window("Ray tracing in a weekend", width as u32, height as u32) .window("Ray tracing in a weekend", width as u32, height as u32)
.position_centered() .position_centered()
.build() .build()
@ -46,6 +46,11 @@ fn main() -> Result<(), String> {
let mut active_demo: Box<dyn Demo> = Box::new(PpmExample); let mut active_demo: Box<dyn Demo> = Box::new(PpmExample);
//println!("{:?} {:?} {:?}", texture.query(), texture.color_mod(), texture.alpha_mod()); //println!("{:?} {:?} {:?}", texture.query(), texture.color_mod(), texture.alpha_mod());
// TODO: Should update when window is unfocus since the project window retains
// data from overlapped window
// TODO: Maybe consider using condition variable to make loop {} not run at full
// speed at all times pinning a core at 100%
let mut should_update = true; let mut should_update = true;
loop { loop {
for event in event_pump.poll_iter() { for event in event_pump.poll_iter() {
@ -83,6 +88,13 @@ fn main() -> Result<(), String> {
should_update = true; should_update = true;
active_demo = Box::new(SurfaceNormalSphere); active_demo = Box::new(SurfaceNormalSphere);
} }
Event::KeyUp {
keycode: Some(Keycode::Num5),
..
} => {
should_update = true;
active_demo = Box::new(HitableSurfaceNormalSphere);
}
Event::KeyUp { Event::KeyUp {
keycode: Some(Keycode::S), keycode: Some(Keycode::S),
.. ..

View File

@ -0,0 +1,3 @@
pub mod sphere;
pub use sphere::Sphere;

View File

@ -0,0 +1,46 @@
use crate::{
hitable::{HitRecord, Hitable},
ray::Ray,
vec3::Vec3,
};
pub struct Sphere {
center: Vec3,
radius: f32,
}
impl Sphere {
pub fn new(center: Vec3, radius: f32) -> Sphere {
Sphere { center, radius }
}
}
impl Hitable for Sphere {
fn hit(&self, ray: &Ray, t_min: f32, t_max: f32, hit_rec: &mut HitRecord) -> bool {
println!("t_max: {}", t_max);
let oc = ray.origin() - self.center;
let a = ray.direction().dot(&ray.direction());
let b = oc.dot(&ray.direction());
let c = oc.dot(&oc) - self.radius * self.radius;
// TODO: I don't yet understand how 4 was canceled from this equation here
let discriminant = b * b - 4.0 * a * c;
if discriminant > 0.0 {
let mut root = (-b - discriminant.sqrt()) / a;
if root < t_max && root > t_min {
hit_rec.t = root;
hit_rec.point = ray.point_at_parameter(hit_rec.t);
hit_rec.normal = (hit_rec.point - self.center) / self.radius;
return true;
}
root = (-b + discriminant.sqrt()) / a;
if root < t_max && root > t_min {
hit_rec.t = root;
hit_rec.point = ray.point_at_parameter(hit_rec.t);
hit_rec.normal = (hit_rec.point - self.center) / self.radius;
return true;
}
}
return false;
}
}